PH4

Question			Marking details	Marks Available
1	(a)	(i)	Increase (change) in the internal energy [of the system]	1
		(ii)	Heat supplied to (flowing into) [the system]	1
		(iii)	Work done by the system	1
	(b)		$P V=n R T$	
			$T=\frac{P V}{n R}(1)=\frac{\left(1.01 \times 10^{5}\right)\left(1.3 \times 1.00 \times 10^{-2}\right)}{(0.4)(8.31)}=395 \mathrm{~K}(1) \text { unit mark }$	2
	(c)	(i)	$\left(1.01 \times 10^{5}\right)\left(0.3 \times 1.00 \times 10^{-2}\right)=303[\mathrm{~J}]$ on gas (1)	
		(ii)	0 / No work (1)	
		(iii)	$\begin{aligned} & \frac{1}{2}\left(0.3 \times 1.00 \times 10^{-2}\right)\left(0.2 \times 1.01 \times 10^{5}\right)+\left(0.3 \times 1.00 \times 10^{-2}\right)\left(1.01 \times 10^{5}\right) \\ & =30+303 \end{aligned}$	
			$=333[J]$ (1) by gas ecf from (c)(i) (1)	4
	(d)		Convincing evidence of multiplication by 3 for the 3 cycles (1) $\begin{equation*} \Delta U=0 \tag{1} \end{equation*}$	
			$Q=\Delta U+W=0+90=90[\mathrm{~J}]$ into gas (1) ecf from (c)(iii)	3
			Question 1 total	[12]

Question			Marking details	Marks Available
2	(a)	(i)	$F t=\Delta(m v) \quad \therefore 3(0.15)=0.200 v \quad v=2.25\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$	1
			Or equivalent but clear method must be shown	
		(ii)	$(0.200)(2.25)=\left(0.200+m_{\mathrm{B}}\right)(1.20)$ (attempting to use conservation of momentum) (1)	
			$m_{\mathrm{B}}=\frac{(0.200)(2.25)-(0.200)(1.20)}{120} \quad(1)=0.175[\mathrm{~kg}]$	2
		(iii)	$\text { KE before collision }=\frac{1}{2}(0.200)(2.25)^{2}=0.506[\mathrm{~J}](1)$	
			KE after collision $=\frac{1}{2}(0.200)(0.15)^{2}+\frac{1}{2}(0.175)(2.40)^{2}=0.506[\mathrm{~J}](1)$ KE before collision = KE after collision [so collision is elastic] (1)	3
	(b)	(i)	$E=h f=\frac{h c}{\lambda}(1)=\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{500 \times 10^{-9}}=3.98 \times 10^{-19}[\mathrm{~J}] \text { (1) }$	2
			$\begin{aligned} & \mathrm{N}^{\mathrm{o}} \text { arriving each second }=\frac{(1500)(100)}{\left(3.98 \times 10^{-19}\right)}=3.77 \times 10^{23} \\ & \text { allow ecf for } \boldsymbol{E} \text { from }(\mathbf{i}) \end{aligned}$	1
		(iii)	Momentum of 1 photon $=\frac{h}{\lambda}=\frac{\left(6.63 \times 10^{-34}\right)}{\left(500 \times 10^{-9}\right)}(1)=1.33 \times 10^{-27}\left[\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right]$ Change of momentum of 1 photon $2(1) \times 1.33 \times 10^{-27}=2.65 \times 10^{-27}\left[\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right]$	
			Total change of momentum of photon in 1 s $=\left(2.65 \times 10^{-27}\right)\left(3.77 \times 10^{23}\right)=9.99 \times 10^{-4}\left[\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right](1)$ Allow ecfs from (b)(i) and (ii)	
			$\text { Force }=\text { Change of momentum per second }=9.99 \times 10^{-4}=1.0 \times 10^{-3}[\mathrm{~N}]$	
			(force on sail is equal and opposite to force on photons)	
			Question 2 total	[12]

Question			Marking details	Marks Available
3	(a)		Acceleration α displacement from central (fixed) point (1)	
			is directed towards the central (fixed) point (1)	2
	(b)	(i)	$\omega=\frac{2 \pi}{T}=\frac{2 \pi}{0.40}=15.7\left[\mathrm{rad} \mathrm{~s}^{-1}\right](1)$	2
		(ii)	$\begin{aligned} & v_{\max }=\omega A=(15.7)(0.05)=0.79\left[\mathrm{~m} \mathrm{~s}^{-1}\right](1) \\ & a_{\max }=\omega^{2} A(1)=(15.7)^{2}(0.05)=12.3\left[\mathrm{~m} \mathrm{~s}^{-2}\right](1) \end{aligned}$	2
	(c)		$x=0.05 \sin \left(15.7 t-\frac{\pi}{2}\right)[\mathrm{m}]$	
			$\begin{aligned} & 0.05(1) \\ & 15.7(1) \\ & -\frac{\pi}{2}(1) \text { or accept }-90^{\circ} \end{aligned}$	3
	(d)		Loses contact when $\quad a=-g(1)$	
			$x=\frac{9.81}{(15.7)^{2}}=0.04[\mathrm{~m}](1)$	2
			Question 3 total	[11]

